Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Obes Rev ; 25(3): e13673, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38111141

ABSTRACT

Systemic inflammation is a key contributor to the onset and progression of several obesity-associated diseases and is thought to predominantly arise from the hyperplasia and hypertrophy of white adipose tissue. However, a growing body of works suggests that early changes in the gastrointestinal (GI) barrier may contribute to both local, within the GI lining, and systemic inflammation in obesity. Intestinal barrier dysfunction is well-characterized in inflammatory GI disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) and is known to contribute to systemic inflammation. Thus, drawing parallels between GI disorders, where intestinal permeability and systemic inflammation are prominent features, and obesity-induced GI manifestations may provide insights into the potential role of the intestinal barrier in systemic inflammation in obesity. This review summarizes the current literature surrounding intestinal barrier dysfunction in obesity and explores the potential role of intestinal hyperpermeability and intestinal barrier dysfunction in the development of systemic inflammation and GI dysfunction in obesity.


Subject(s)
Gastrointestinal Tract , Intestinal Mucosa , Humans , Inflammation/etiology , Intestines , Obesity/complications
2.
Biomolecules ; 13(11)2023 10 24.
Article in English | MEDLINE | ID: mdl-38002251

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation of the gastrointestinal tract. The prevalence of IBD is increasing with approximately 4.9 million cases reported worldwide. Current therapies are limited due to the severity of side effects and long-term toxicity, therefore, the development of novel IBD treatments is necessitated. Recent findings support apurinic/apyrimidinic endonuclease 1/reduction-oxidation factor 1 (APE1/Ref-1) as a target in many pathological conditions, including inflammatory diseases, where APE1/Ref-1 regulation of crucial transcription factors impacts significant pathways. Thus, a potential target for a novel IBD therapy is the redox activity of the multifunctional protein APE1/Ref-1. This review elaborates on the status of conventional IBD treatments, the role of an APE1/Ref-1 in intestinal inflammation, and the potential of a small molecule inhibitor of APE1/Ref-1 redox activity to modulate inflammation, oxidative stress response, and enteric neuronal damage in IBD.


Subject(s)
Inflammatory Bowel Diseases , Oxidative Stress , Humans , Inflammation/drug therapy , Inflammation/pathology , Inflammatory Bowel Diseases/drug therapy , Oxidation-Reduction , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
3.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37751291

ABSTRACT

New medicines are urgently required to treat the fatal neuromuscular disease Duchenne muscular dystrophy (DMD). Dimethyl fumarate (DMF) is a potent immunomodulatory small molecule nuclear erythroid 2-related factor 2 activator with current clinical utility in the treatment of multiple sclerosis and psoriasis that could be effective for DMD and rapidly translatable. Here, we tested 2 weeks of daily 100 mg/kg DMF versus 5 mg/kg standard-care prednisone (PRED) treatment in juvenile mdx mice with early symptomatic DMD. Both drugs modulated seed genes driving the DMD disease program and improved force production in fast-twitch muscle. However, only DMF showed pro-mitochondrial effects, protected contracting muscles from fatigue, improved histopathology, and augmented clinically compatible muscle function tests. DMF may be a more selective modulator of the DMD disease program than PRED, warranting follow-up longitudinal studies to evaluate disease-modifying impact.


Subject(s)
Dimethyl Fumarate , Muscular Dystrophy, Duchenne , Animals , Mice , Mice, Inbred mdx , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Prednisone , Muscles/pathology
4.
Stem Cells Transl Med ; 12(12): 801-810, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37774373

ABSTRACT

Oxidative stress is involved in many gastrointestinal (GI) disorders as either the primary pathogenesis (radiation, chemotherapy, toxicity, ischemia-reperfusion) or a secondary driving force of disease progression (inflammation and diabetes). The GI tract is innervated intrinsically by the enteric nervous system (ENS) with a diverse role in maintaining gut homeostasis and GI motility. Complications in the physiological functioning of the ENS results in GI dysfunction that can result in debilitating sequelae from dysmotility greatly impacting quality of life and leading to potentially fatal complications. Therapeutics to remedy either oxidative stress or enteric neuronal dysfunction are severely limited, resulting in a critical gap in clinical care for GI disease and neurointestinal complications. Stem cell therapies have shown great promise in the treatment of several gut disorders via mechanisms including cell regeneration, anti-inflammatory activity, providing trophic support, and emerging evidence of antioxidant and neuroprotective functions. The potential of mesenchymal stem cell (MSC) therapies and recent evidence of their antioxidant and neuroprotective activity in several GI conditions are discussed. Finally, future therapeutic aspects of stem cell-based tools for combatting oxidative stress and enteric neuropathies in GI disease are considered.


Subject(s)
Gastrointestinal Diseases , Mesenchymal Stem Cells , Humans , Antioxidants , Quality of Life , Gastrointestinal Diseases/therapy , Oxidative Stress
5.
Inflamm Res ; 72(1): 57-74, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36322182

ABSTRACT

BACKGROUND: Respiratory inflammation is the body's response to lung infection, trauma or hypersensitivity and is often accompanied by comorbidities, including gastrointestinal (GI) symptoms. Why respiratory inflammation is accompanied by GI dysfunction remains unclear. Here, we investigate the effect of lipopolysaccharide (LPS)-induced lung inflammation on intestinal barrier integrity, tight-junctions, enteric neurons and inflammatory marker expression. METHODS: Female C57bl/6 mice (6-8 weeks) were intratracheally administered LPS (5 µg) or sterile saline, and assessed after either 24 or 72 h. Total and differential cell counts in bronchoalveolar lavage fluid (BALF) were used to evaluate lung inflammation. Intestinal barrier integrity was assessed via cross sectional immunohistochemistry of tight junction markers claudin-1, claudin-4 and EpCAM. Changes in the enteric nervous system (ENS) and inflammation in the intestine were quantified immunohistochemically using neuronal markers Hu + and nNOS, glial markers GFAP and S100ß and pan leukocyte marker CD45. RESULTS: Intratracheal LPS significantly increased the number of neutrophils in BALF at 24 and 72 h. These changes were associated with an increase in CD45 + cells in the ileal mucosa at 24 and 72 h, increased goblet cell expression at 24 h, and increased expression of EpCAM at 72 h. LPS had no effect on the expression of GFAP, S100ß, nor the number of Hu + neurons or proportion of nNOS neurons in the myenteric plexus. CONCLUSIONS: Intratracheal LPS administration induces inflammation in the ileum that is associated with enhanced expression of EpCAM, decreased claudin-4 expression and increased goblet cell density, these changes may contribute to systemic inflammation that is known to accompany many inflammatory diseases of the lung.


Subject(s)
Ileum , Inflammation , Pneumonia , Animals , Female , Mice , Claudin-4/metabolism , Cross-Sectional Studies , Epithelial Cell Adhesion Molecule/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/metabolism , Lung/metabolism , Pneumonia/chemically induced , Ileum/pathology
6.
Biomolecules ; 12(12)2022 12 07.
Article in English | MEDLINE | ID: mdl-36551259

ABSTRACT

High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released by dying cells to stimulate the immune response. During cell death, HMGB1 is translocated from the nucleus to the cytoplasm and passively released. High levels of secreted HMGB1 are observed in the faeces of inflammatory bowel disease (IBD) patients, indicating its role in IBD pathophysiology and potential as a non-invasive IBD biomarker. HMGB1 is important in regulating neuronal damage in the central nervous system; its pathological activity is intertwined with oxidative stress and inflammation. In this study, HMGB1 expression in the enteric nervous system and its relevance to intestinal neuroinflammation is explored in organotypic cultures of the myenteric plexus exposed to oxidative stimuli and in Winnie mice with spontaneous chronic colitis. Oxidative stimuli induced cytoplasmic translocation of HMGB1 in myenteric neurons in organotypic preparations. HMGB1 translocation correlated with enteric neuronal loss and oxidative stress in the myenteric ganglia of Winnie mice. Inhibition of HMGB1 by glycyrrhizic acid ameliorated HMGB1 translocation and myenteric neuronal loss in Winnie mice. These data highlight modulation of HMGB1 signalling as a therapeutic strategy to reduce the consequences of enteric neuroinflammation in colitis, warranting the exploration of therapeutics acting on the HMGB1 pathway as an adjunct treatment with current anti-inflammatory agents.


Subject(s)
HMGB1 Protein , Inflammatory Bowel Diseases , Peripheral Nervous System Diseases , Animals , Mice , HMGB1 Protein/metabolism , Inflammatory Bowel Diseases/complications , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neurons/metabolism , Oxidative Stress , Peripheral Nervous System Diseases/etiology , Peripheral Nervous System Diseases/metabolism
7.
Adv Exp Med Biol ; 1383: 221-228, 2022.
Article in English | MEDLINE | ID: mdl-36587161

ABSTRACT

Enteric neuropathy underlies long-term gastrointestinal (GI) dysfunction associated with several pathological conditions. Our previous studies have demonstrated that structural and functional changes in the enteric nervous system (ENS) result in persistent alterations of intestinal functions long after the acute insult. These changes lead to aberrant immune response and chronic dysregulation of the epithelial barrier. Damage to the ENS is prognostic of disease progression and plays an important role in the recurrence of clinical manifestations. This suggests that the ENS is a viable therapeutic target to alleviate chronic intestinal dysfunction. Our recent studies in preclinical animal models have progressed into the development of novel therapeutic strategies for the treatment of enteric neuropathy in various chronic GI disorders. We have tested the anti-inflammatory and neuroprotective efficacy of novel compounds targeting specific molecular pathways. Ex vivo studies in human tissues freshly collected after resection surgeries provide an understanding of the molecular mechanisms involved in enteric neuropathy. In vivo treatments in animal models provide data on the efficacy and the mechanisms of actions of the novel compounds and their combinations with clinically used therapies. These novel findings provide avenues for the development of safe, cost-effective, and highly efficacious treatments of GI disorders.


Subject(s)
Enteric Nervous System , Gastrointestinal Diseases , Intestinal Pseudo-Obstruction , Animals , Humans , Enteric Nervous System/pathology , Gastrointestinal Diseases/drug therapy , Intestinal Pseudo-Obstruction/pathology , Treatment Outcome , Models, Animal
8.
Inflamm Bowel Dis ; 28(8): 1229-1243, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35380670

ABSTRACT

BACKGROUND: The autonomic nervous system (ANS) is thought to play a critical role in the anti-inflammatory reflex pathway in acute colitis via its interaction with the spleen and colon. Inflammation in the intestine is associated with a blunting of vagal signaling and increased sympathetic activity. As a corollary, methods to restore sympatho-vagal balance are being investigated as therapeutic strategies for the treatment of intestinal inflammation. Nevertheless, it is indefinite whether these autonomic signaling adaptations in colitis are detrimental or beneficial to controlling intestinal inflammation. In this study, models of moderate and severe chronic colitis are utilized to resolve the correlations between sympatho-vagal signaling and the severity of intestinal inflammation. METHODS: Spleens and colons were collected from Winnie (moderate colitis), Winnie-Prolapse (severe colitis), and control C57BL/6 mice. Changes to the size and histomorphology of spleens were evaluated. Flow cytometry was used to determine the expression of adrenergic and cholinergic signaling proteins in splenic B and T lymphocytes. The inflammatory profile of the spleen and colon was determined using a RT-PCR gene array. Blood pressure, heart rate, splanchnic sympathetic nerve and vagus nerve activity were recorded. RESULTS: Spleens and colons from Winnie and Winnie-Prolapse mice exhibited gross abnormalities by histopathology. Genes associated with a pro-inflammatory response were upregulated in the colons from Winnie and further augmented in colons from Winnie-Prolapse mice. Conversely, many pro-inflammatory markers were downregulated in the spleens from Winnie-Prolapse mice. Heightened activity of the splanchnic nerve was observed in Winnie but not Winnie-Prolapse mice. Conversely, vagal nerve activity was greater in Winnie-Prolapse mice compared with Winnie mice. Splenic lymphocytes expressing α1 and ß2 adrenoreceptors were reduced, but those expressing α7 nAChR and producing acetylcholine were increased in Winnie and Winnie-Prolapse mice. CONCLUSIONS: Sympathetic activity may correlate with an adaptive mechanism to reduce the severity of chronic colitis. The Winnie and Winnie-Prolapse mouse models of moderate and severe chronic colitis are well suited to examine the pathophysiology of progressive chronic intestinal inflammation.


In this study we use mouse models of moderate and severe colitis to resolve the relationship between autonomic and neuroimmune signaling with inflammation. Increased expression of cholinergic markers on immune cells correlated with an anti-inflammatory profile in the spleen, consistent with activation of the splenic cholinergic anti-inflammatory pathway in mice with spontaneous chronic colitis. However, enhanced sympathetic signaling occurred in mice with a less severe phenotype of colitis, which could represent an adaptive mechanism to mitigate the progression of intestinal inflammation.


Subject(s)
Colitis , Animals , Colitis/pathology , Disease Models, Animal , Inflammation/pathology , Mice , Mice, Inbred C57BL , Prolapse , Vagus Nerve
9.
Inflamm Bowel Dis ; 27(3): 388-406, 2021 02 16.
Article in English | MEDLINE | ID: mdl-32618996

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) associates with damage to the enteric nervous system (ENS), leading to gastrointestinal (GI) dysfunction. Oxidative stress is important for the pathophysiology of inflammation-induced enteric neuropathy and GI dysfunction. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual functioning protein that is an essential regulator of the cellular response to oxidative stress. In this study, we aimed to determine whether an APE1/Ref-1 redox domain inhibitor, APX3330, alleviates inflammation-induced oxidative stress that leads to enteric neuropathy in the Winnie murine model of spontaneous chronic colitis. METHODS: Winnie mice received APX3330 or vehicle via intraperitoneal injections over 2 weeks and were compared with C57BL/6 controls. In vivo disease activity and GI transit were evaluated. Ex vivo experiments were performed to assess functional parameters of colonic motility, immune cell infiltration, and changes to the ENS. RESULTS: Targeting APE1/Ref-1 redox activity with APX3330 improved disease severity, reduced immune cell infiltration, restored GI function ,and provided neuroprotective effects to the enteric nervous system. Inhibition of APE1/Ref-1 redox signaling leading to reduced mitochondrial superoxide production, oxidative DNA damage, and translocation of high mobility group box 1 protein (HMGB1) was involved in neuroprotective effects of APX3330 in enteric neurons. CONCLUSIONS: This study is the first to investigate inhibition of APE1/Ref-1's redox activity via APX3330 in an animal model of chronic intestinal inflammation. Inhibition of the redox function of APE1/Ref-1 is a novel strategy that might lead to a possible application of APX3330 for the treatment of IBD.


Subject(s)
Colitis , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Intestinal Pseudo-Obstruction , Neuroprotective Agents/therapeutic use , Animals , Colitis/chemically induced , Colitis/drug therapy , Disease Models, Animal , Inflammation/drug therapy , Mice , Mice, Inbred C57BL , Neurons , Oxidation-Reduction , Oxidative Stress
10.
Inflamm Bowel Dis ; 25(7): 1140-1151, 2019 06 18.
Article in English | MEDLINE | ID: mdl-30856253

ABSTRACT

Clinical investigations in inflammatory bowel disease (IBD) patients have provided increasing evidence that eosinophils contribute to chronic intestinal inflammation. Accumulation of eosinophils in the gastrointestinal tract correlates with the variations of eosinophil regulatory molecules; however, their role in gastrointestinal dysfunction in IBD has not been fully elucidated. This review will describe the development and characterization of gastrointestinal eosinophils, mechanisms of eosinophil recruitment to the gastrointestinal tract. Moreover, the eosinophil-induced changes to the enteric nervous system associated with disease severity and gastrointestinal dysfunction will be analyzed with suggestive molecular pathways for enteric neuronal injury. Current and potential therapeutic interventions targeting eosinophils will be discussed.


Subject(s)
Eosinophils/pathology , Inflammation/complications , Inflammatory Bowel Diseases/etiology , Humans , Inflammatory Bowel Diseases/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...